

BBH-003-1016003 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

July - 2021

Mathematics: Paper-10(A)

(Optimization & Numerical Analysis-II)

Faculty Code: 003

Subject Code: 1016003

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 **Instruction:** Answer any five questions (A) Answer the following questions: 1 4 Define Objective function with respect to Linear Programming Problems. 2. Define Hyperplane in E^n . 3. Define Convex set. Define Convex Hull. (B) Write matrix form of Linear Programming Problems. 2 Draw a sketch of the graph of following LPP: Maximize $Z = 5x_1 + 7x_2$ subject to $x_1 + x_2 \le 4.3x_1 + 8x_2 \le 24$, $10x_1 + 7x_2 \le 35, x_1, x_2 \ge 0$ Explain Simplex method to solve Linear Programming (D) Problems. 2 Answer the following questions: 4 Write standard form of Linear Programming Problems. 2. The linear function in any LPP that is to be optimized is called What is Degenerate B.F.S.? 3. 4. What is Non-generate B.F.S.? (B) Define Slack variables and Surplus variables. (C) Explain steps of Graphical method to solve 3 Linear Programming Problems. Explain Big-M method to solve Linear Programming (D) 5 Problems.

3	(A)	Answer	the	following	questions:
---	-----	--------	-----	-----------	------------

4

- 1. What is the full form of NWCM?
- 2. What is the full form of LCM?
- 3. What is the full form of VAM?
- 4. What is the name of the method to solve assignment problems ?
- (B) Write mathematical form of transportation problem.
- (C) Write three steps of NWCM.

3 5

2

4

- (D) Explain Penalty method.
- 4 (A) Answer the following questions:
 - Which variables are introduced to the LPP with≤ type constraints ?
 - Which variables are introduced to the LPP with≥ type constraints ?
 - 3. Which method is better out of NWCM and LCM? Give reason.
 - 4. What is dual?
 - (B) Explain Matrix Minima Method.

2

3

- (C) Write six relationships between primal and dual LP problems.
- (D) Obtain the dual problem of the following primal LP 5 problem:

Minimize $Z_x = 5x_1 + 2x_2 + x_3$ subject to $x_1 - 3x_2 + 4x_3 = 5$,

$$x_1 - 2x_2 + 0x_3 \le 3$$
 $0x_1 + 2x_2 - x_3 \ge 4$ and $x_1, x_2 \ge 0, x_3$ is unrestrocted.

5 (A) Answer the following questions:

- 4
- 1. Write Gauss forward interpolation formula.
- 2. Write Gauss backward interpolation formula
- 3. Write Sterling formula.
- 4. Write Bessel's formula.
- (B) Which formula is used for inverse interpolation?
- (C) Obtain Laplace-Everett's formula.

- 2 3
- (D) Use Langrange's formula to find the form of f(x) 5 given:

1	x	0	2	3	6
1	f(x)	648	704	729	792

 6 (A) Answer the following questions: 1. Write the formula of f(x₂,x₃) in usual notations of the divided difference. 	4					
of the divided difference.						
of the divided difference.						
2. Write the formula of $f(x_0, x_1, x_2)$ in usual notations of the divided difference.						
3. Write Lagrange's interpolation formula.						
4. What is the drawback Lagrange's interpolation?						
(B) Write a relation of forward difference operator in terms of central difference operator and shifting operator and then write central difference operator in terms of shifting operator and forward difference operator.	2					
(C) If $f(x) = x^3$ then find $f(1,3,5,7)$.	3					
(D) Obtain the formula to interpolate the value of y	5					
for $0 < P < 1$.						
7 (A) Answer the following questions:	4					
1. What is numerical differentiation?						
2. To find $\int_a^b y dx$ called Fill in the blank.						
3. Write Trapezoidal rule.						
4. Write Simpson's 1/3 rule.	4. Write Simpson's 1/3 rule.					
(B) Obtain central difference table for the following data:	2					
x 60 75 90 105 120						
f(x) 28.2 38.2 43.2 40.9 37.7						
(C) Derive Trapezoidal rule.	3					
(D) Derive Simpson's 3/8 rule.	5					

(A)	Answer the	following	questions	:

4

- 1. Write general quadrature formula.
- 2. Write Simpson's 3/8 rule.

3. Value of
$$\int_{2}^{6} \frac{dx}{x} =$$

by trapezoidal rule. Fill in the blank.

4. Value of
$$\int_2^6 \frac{dx}{x} =$$
 _____ by Simpson's 1/3 rule. Fill in the blank.

		10م	dx			
(B)	Find the val	tue of J_0	$\frac{1}{1+x^2}$	by trapezoidal	rule.	2

(C) Prove :
$$D^3 = \frac{1}{h^3} [\Delta^3 - \frac{3}{2}\Delta^4 + \frac{7}{4}\Delta^5 + ...]$$
 3

- (D) Obtain derivatives using Stirling's formula. 5
- 9 (A) Answer the following questions:

 4

 Write Teylor's formula to solve and new differential
 - 1. Write Taylor's formula to solve ordinary differential equation.
 - 2. Write Picard's formula to solve ordinary differential equation.
 - 3. Write Range's formula for K_0 .
 - 4. Write Range Kutta's formula to find K_0 .
 - (B) Write two difference between Gauss-Backward interpolation and Lagrange's interpolation.
 - (C) Explain Range's method.
 - (D) Solve $\frac{dy}{dx} = 2e^x y$, y(0.1) = 2.010, y(0.2) = 2.040, 5
 - y(0.3) = 2.090. Find y(0.4) correct to three decimal places applying Milne's predictor method.
- 10 (A) Answer the following questions:
 - 1. Find y_0' by Taylor's method $\frac{dy}{dx} = y^2 x$, y(0) = 1.
 - 2. For $\frac{dy}{dx} = 3x + y^2$, y(1) = 1.2 by Range's method find k_1 .
 - 3. Write Euler's modified formula for y_2 .
 - 4. What is the improved Euler's formula for y_1 ?
 - (B) Using Picard's method solve $\frac{dy}{dx} = x + y$, solve first approximation. Initial condition is y(0) = 1.
 - (C) Explain Range Kutta method. 3
 - (D) Explain Euler's method to solve ordinary differential equation. 5